搜索
    上傳資料 賺現(xiàn)金

    [精] 2022-2023學(xué)年北京市西城區(qū)育才學(xué)校九年級(上)期中數(shù)學(xué)試卷(含答案解析)

    加入資料籃
    立即下載
    2022-2023學(xué)年北京市西城區(qū)育才學(xué)校九年級(上)期中數(shù)學(xué)試卷(含答案解析)第1頁
    1/22
    2022-2023學(xué)年北京市西城區(qū)育才學(xué)校九年級(上)期中數(shù)學(xué)試卷(含答案解析)第2頁
    2/22
    2022-2023學(xué)年北京市西城區(qū)育才學(xué)校九年級(上)期中數(shù)學(xué)試卷(含答案解析)第3頁
    3/22

    2022-2023學(xué)年北京市西城區(qū)育才學(xué)校九年級(上)期中數(shù)學(xué)試卷(含答案解析)

    展開

    這是一份2022-2023學(xué)年北京市西城區(qū)育才學(xué)校九年級(上)期中數(shù)學(xué)試卷(含答案解析),共22頁。試卷主要包含了50分鐘B,【答案】B,【答案】C,【答案】D,【答案】A,【答案】等內(nèi)容,歡迎下載使用。
    2022-2023學(xué)年北京市西城區(qū)育才學(xué)校九年級(上)期中數(shù)學(xué)試卷     一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項分別是(    )A. 21,5 B. 2,1 C. 20, D. 2,0,5    下列四個圖形中,是中心對稱圖形的是(    )A.  B.
    C.  D.     將拋物線向上平移3個單位后所得的解析式為(    )A.  B.  C.  D.     在平面直角坐標(biāo)系xOy中,點關(guān)于原點對稱的點的坐標(biāo)是(    )A.  B.  C.  D.     用配方法解方程,變形后結(jié)果正確的是(    )A.  B.  C.  D.     二次函數(shù)的圖象如圖所示,,則下列四個選項正確的是(    )A.
    B. ,
    C. ,
    D. ,,    二次函數(shù)的最大值為(    )A.  B. 2 C. 5 D. 9    小高發(fā)現(xiàn),用微波爐加工爆米花時,時間太短,一些顆粒沒有充分爆開,時間太長,就糊了.如果將爆開且不糊的粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時間單位:分鐘滿足的函數(shù)關(guān)系、b、c是常數(shù),小高記錄了三次實驗的數(shù)據(jù)如圖根據(jù)上述函數(shù)模型和實驗數(shù)據(jù),可以得到最佳加工時間為(    )
     A. 分鐘 B. 分鐘 C. 分鐘 D. 分鐘    拋物線的頂點坐標(biāo)是__________.若關(guān)于x的一元二次方程有一個根為,則m的值為______.請寫出一個開口向上,并且與y軸交于點的拋物線的表達(dá)式:__________.若二次函數(shù)的圖象上有兩個點、,則m______填“<”或“=”或“>把二次函數(shù)配成的形式是______.如圖,將繞點A順時針旋轉(zhuǎn)得到,若,,則的度數(shù)為__________.
     拋物線的部分圖象如圖所示,則當(dāng)時,x的取值范圍是______ .
     在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為是第一象限內(nèi)任意一點,連接PO,,,則我們把叫做點P的“雙角坐標(biāo)”.
    的“雙角坐標(biāo)”為______;
    若點Px軸的距離為,則的最小值為______.解下列一元二次方程:

     在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過點
    求二次函數(shù)的表達(dá)式;
    求二次函數(shù)圖象的對稱軸.已知二次函數(shù)的解析式是
    x軸的交點坐標(biāo)是______,頂點坐標(biāo)是______
    在坐標(biāo)系中利用描點法畫出此拋物線;x     y     結(jié)合圖象回答:當(dāng)時,函數(shù)值y的取值范圍是______.
    如圖,在寬為20米,長為30米的矩形地面上修建兩條同樣寬的道路,余下部分作為耕地.若耕地面積需要551,則修建的路寬應(yīng)為多少米?
     如圖,在平面直角坐標(biāo)系xOy中,的頂點坐標(biāo)分別為,,,將繞點O順時針旋轉(zhuǎn)得到,點A旋轉(zhuǎn)后的對應(yīng)點為
    畫出旋轉(zhuǎn)后的;
    寫出點的坐標(biāo).
    已知關(guān)于x的一元二次方程
    求證:該方程總有兩個實數(shù)根;
    若該方程有一個根小于2,求k的取值范圍.小聰是一名愛學(xué)習(xí)的孩子,他學(xué)習(xí)完二次函數(shù)后對函數(shù)的圖像和性質(zhì)進行了探究,探究過程如下,請補充完整.
    自變量x的取值范圍是全體實數(shù),xy的幾組對應(yīng)數(shù)值如下表:x12ym其中______;
    如圖,在平面直角坐標(biāo)系xOy中,描出了以表中各對對應(yīng)值為坐標(biāo)的點,根據(jù)描出的點,畫出該函數(shù)的圖像;

    觀察函數(shù)圖像,寫出一條該函數(shù)的性質(zhì)______;
    進一步探究函數(shù)圖像發(fā)現(xiàn):
    函數(shù)圖像與x軸有交點,所以對應(yīng)的方程______個互為不相等的實數(shù)根,請寫出其中一個根為______.某商店銷售一種進價為20/雙的手套,經(jīng)調(diào)查發(fā)現(xiàn),該種手套每天的銷售量與銷售單價滿足,設(shè)銷售這種手套每天的利潤為
    yx之間的函數(shù)關(guān)系式;
    當(dāng)銷售單價定為多少元時,每天的利潤最大?最大利潤是多少?體育課上,一名九年級學(xué)生測試扔實心球.已知實心球經(jīng)過的路線是某個二次函數(shù)圖像的一部分,如果球出手處A點距離地面的高度為2米,當(dāng)球運行的水平距離為4米時,到達(dá)最大高度為4米的B如圖所示
    D為原點,CD所在直線為x軸建立平面直角坐標(biāo)系,在圖中畫出坐標(biāo)系,點B的坐標(biāo)為______;
    請你計算該學(xué)生把實心球扔出多遠(yuǎn)?結(jié)果保留根號
    在平面直角坐標(biāo)系xOy中,拋物線與平行于x軸的一條直線交于A,B兩點.
    求拋物線的對稱軸;
    如果點A的坐標(biāo)是,求點B的坐標(biāo);
    拋物線的對稱軸交直線AB于點C,如果直線ABy軸交點的縱坐標(biāo)為,且拋物線頂點D到點C的距離大于2,求m的取值范圍.
    已知:在中,斜邊,在射線AC上取一點D,使射線BC上取一點E,使,直線AE、BD交于點F,點E關(guān)于直線BF的對稱點為
    如圖,當(dāng)時,請你直接寫出的度數(shù)______;

    如圖,當(dāng)時,請你直接寫出的長度______;

    在圖中,探索EFBD的數(shù)量關(guān)系,并對你的結(jié)論進行證明.
     在平面直角坐標(biāo)系xOy中,對于點,給出如下定義:若,則稱點Q為點P的“可控變點”.
    例如:點的“可控變點”為點,點的“可控變點”為點
    的“可控變點”坐標(biāo)為______
    若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標(biāo)7,求“可控變點”Q的橫坐標(biāo);
    若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標(biāo)的取值范圍是,求實數(shù)a的取值范圍.
    答案和解析 1.【答案】B 【解析】解:一元二次方程的二次項系數(shù),一次項系數(shù),常數(shù)項分別是2,1,,
    故選:
    根據(jù)二次項系數(shù)、一次項系數(shù)、常數(shù)項的定義即可得出結(jié)果.
    本題考查了一元二次方程的一般形式,一元二次方程的一般形式是:是常數(shù)且,在一般形式中叫二次項,bx叫一次項,c是常數(shù)項.其中a,b,c分別叫二次項系數(shù),一次項系數(shù),常數(shù)項.
     2.【答案】C 【解析】解:不是中心對稱圖形,故本選項不合題意;
    B.不是中心對稱圖形,故本選項不合題意;
    C.是中心對稱圖形,故本選項符合題意;
    D.不是中心對稱圖形,故本選項不合題意.
    故選:
    根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.把一個圖形繞某一點旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.
    本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,繞對稱中心旋轉(zhuǎn)180度后與原圖重合.
     3.【答案】A 【解析】解:拋物線向上平移3個單位,
    平移后的解析式為:,
    故選:
    根據(jù)二次函數(shù)圖象變化規(guī)律:左加右減,上加下減,進而得出變化后解析式.
    此題考查了拋物線圖象的平移規(guī)律,熟練記憶二次函數(shù)圖象平移規(guī)律是解題關(guān)鍵.
     4.【答案】D 【解析】解:
    點關(guān)于原點對稱的點為,
    故選:
    兩個點關(guān)于原點對稱時,它們的橫縱坐標(biāo)互為相反數(shù),由此可求點A關(guān)于原點對稱的點的坐標(biāo).
    本題考查關(guān)于原點對稱的點的坐標(biāo)特點,熟練掌握關(guān)于原點對稱的點的坐標(biāo)特點是解題的關(guān)鍵.
     5.【答案】A 【解析】解:原方程兩邊同時加上4,
    ,
    ,
    故選:
    根據(jù)配方法,方程兩邊都加上一次項系數(shù)一半的平方配成完全平方式后即可得出答案.
    本題主要考查解一元二次方程的方法--配方法,掌握配方法是解本題的關(guān)鍵.
     6.【答案】A 【解析】解:拋物線的開口向上,
    ,
    拋物線的對稱軸在y軸的右側(cè),
    ,
    ,
    拋物線與y軸的交點在x軸的下方,
    ,
    拋物線與x軸有兩個交點,
    ,
    故選:
    根據(jù)拋物線的開口方向和對稱軸的位置確定b的符號,由拋物線與x軸的交點個數(shù)確定的符號,由拋物線與y軸的交點位置確定c的符號,即可得出答案.
    本題主要考查二次函數(shù)的圖象與性質(zhì),關(guān)鍵是要牢記圖象與系數(shù)的關(guān)系,牢記拋物線的對稱軸公式.
     7.【答案】C 【解析】解:化成頂點式,
    拋物線開口向下,頂點為,
    函數(shù)的最大值為5,
    故選:
    化成頂點式,確定最值即可.
    本題考查了二次函數(shù)化成頂點式,熟練掌握配方法化二次函數(shù)的一般式為頂點式是解題的關(guān)鍵.
     8.【答案】B 【解析】解:由題意函數(shù)關(guān)系是常數(shù)經(jīng)過點,
    代入得:,
    解得:,

    得到最佳加工時間為分鐘.
    故選:
    由題意函數(shù)關(guān)系是常數(shù)經(jīng)過點,,,列出方程組,推導(dǎo)出,由此能得到最佳加工時間.
    本題主要考查二次函數(shù)的應(yīng)用,熟練掌握待定系數(shù)法求函數(shù)解析式及利用二次函數(shù)的圖象和性質(zhì)求最值問題是解題的關(guān)鍵.
     9.【答案】 【解析】解:是拋物線的頂點式解析式,
    頂點坐標(biāo)為
    故答案為;
    直接根據(jù)頂點式解析式的特點求頂點坐標(biāo).
    本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式解析式是解題的關(guān)鍵,即在中,對稱軸為直線,頂點坐標(biāo)為
     10.【答案】1 【解析】解:把代入方程,
    解得
    故答案為:
    代入方程,然后解關(guān)于m的方程即可.
    本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.
     11.【答案】答案不唯一 【解析】解:拋物線的開口向上,

    拋物線與y軸交于點,
    ,
    所以拋物線的表達(dá)式為,
    故答案為:答案不唯一
    根據(jù)二次函數(shù)的性質(zhì),所寫出的函數(shù)解析式a是正數(shù),即可.
    本題主要考查二次函數(shù),解題的關(guān)鍵是熟練掌握二次函數(shù)的圖象和性質(zhì).
     12.【答案】> 【解析】解:
    在函數(shù)的圖象上,
    ,,
    ,
    故答案為:
    把點的坐標(biāo)代入函數(shù)解析式可求得m、n的值,再進行比例大小即可.
    本題主要考查二次函數(shù)圖象上點的坐標(biāo)特征,掌握函數(shù)圖象上點的坐標(biāo)滿足函數(shù)解析式是解題的關(guān)鍵.
     13.【答案】 【解析】解:二次函數(shù)配成頂點式為,
    故答案是:
    用配方法二次函數(shù)可化為,即
    考查了二次函數(shù)的解析式有三種形式:
    一般式:、b、c為常數(shù);
    頂點式:
    交點式x
     14.【答案】 【解析】解:繞點A順時針旋轉(zhuǎn)得到,
    ,
    中,,,

           
           ,
    故答案為:
    由旋轉(zhuǎn)的性質(zhì)可得,由三角形的內(nèi)角和定理即可求解.
    本題考查了旋轉(zhuǎn)的性質(zhì),三角形內(nèi)角和定理等知識,靈活運用這些性質(zhì)解決問題是本題的關(guān)鍵.
     15.【答案】 【解析】解:拋物線與x軸的一個交點坐標(biāo)是,對稱軸是直線
    拋物線與x軸另一交點的坐標(biāo)是,
    當(dāng)時,
    故答案為:
    先求出拋物線與x軸另一交點的坐標(biāo),再利用函數(shù)圖象即可而出結(jié)論.
    本題考查的是二次函數(shù)與不等式,能根據(jù)題意利用數(shù)形結(jié)合求出x的取值范圍是解答此題的關(guān)鍵.
     16.【答案】 【解析】解:如圖,設(shè)為定點P,
    軸,,

    所以,
    的“雙角坐標(biāo)”為,
    故答案為:
    根據(jù)題意,最小時,
    所以的度數(shù)最大,以AO為直徑作圓,與直線切于點P,
    此時的值最大,
    設(shè)是直線的異于點P的任意一點,
    連接,交圓于點B,
    連接AB,

    因為AO為直徑,
    所以,
    因為的外角,
    所以,
    的值最大,
    所以最小,且最小為
    故答案為:
    設(shè)為定點P,則軸,,從而,,根據(jù)定義解答即可.
    根據(jù)題意,最小時,就是的度數(shù)最大,以AO為直徑作圓,與直線切于點P,此時的值最大,結(jié)合AO為直徑,得到為直角,計算即可.
    本題考查了圓的基本性質(zhì),等腰直角三角形的性質(zhì),反證法,熟練掌握定義,靈活運用所學(xué)知識是解題的關(guān)鍵.
     17.【答案】解:

    ,
    所以;

    ,
    ,
    ,

    所以, 【解析】利用因式分解法把方程轉(zhuǎn)化為,然后解一次方程即可;
    利用配方法得到,然后利用直接開平方法解方程.
    本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了配方法.
     18.【答案】解:二次函數(shù)的圖象經(jīng)過點,
    把點代入二次函數(shù),得,
    解得:
    二次函數(shù)的表達(dá)式為
    在二次函數(shù)中,
    ,,
    ,
    二次函數(shù)圖象的對稱軸為直線 【解析】本題考查了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的圖象與性質(zhì),二次函數(shù)圖象上點的坐標(biāo)特征,準(zhǔn)確熟練地進行計算是解題的關(guān)鍵.
    把點代入函數(shù)關(guān)系式進行計算即可;
    根據(jù)對稱軸公式進行計算即可.
     19.【答案】,當(dāng)時,;當(dāng)時, 【解析】解:,則
    解得
    拋物線x軸交點的坐標(biāo)為,

    所以它的頂點坐標(biāo)為;
    列表:x0123y00圖象如圖所示:

    當(dāng)時,
    當(dāng)時,
    根據(jù)拋物線,可以求得拋物線與x軸和y軸的交點;
    根據(jù)第一問中的三個坐標(biāo)和二次函數(shù)圖象具有對稱性,在表格中填入合適的數(shù)據(jù),然后再描點作圖即可;
    根據(jù)第二問中的函數(shù)圖象結(jié)合對稱軸可以直接寫出答案.
    本題考查二次函數(shù)的圖象與性質(zhì),二次函數(shù)與x軸、y軸的交點、求頂點坐標(biāo),畫二次函數(shù)的圖象,關(guān)鍵是可以根據(jù)圖象得出所求問題的答案.
     20.【答案】解:設(shè)修建的路寬為x米.
    則列方程為,
    解得舍去,
    答:修建的道路寬為1米. 【解析】本題涉及一元二次方程的應(yīng)用,難度中等.設(shè)路寬為x米,則道路面積為,所以耕地面積為,解方程即可.
     21.【答案】解:如圖,即為所求.

    由圖可得,點的坐標(biāo)為 【解析】根據(jù)旋轉(zhuǎn)的性質(zhì)作圖即可.
    由圖可得答案.
    本題考查作圖-旋轉(zhuǎn)變換,熟練掌握旋轉(zhuǎn)的性質(zhì)是解答本題的關(guān)鍵.
     22.【答案】證明:


    ,
    無論k為任何實數(shù)時,此方程總有兩個實數(shù)根;
    解:
                      ,
                               
    方程有一根小于2,
    ,
    的取值范圍為 【解析】本題考查了根的判別式、因式分解法解一元二次方程以及解一元一次不等式,解題的關(guān)鍵是:牢記“當(dāng)時,方程有兩個實數(shù)根”;利用因式分解法解一元二次方程結(jié)合方程一根小于2,找出關(guān)于k的一元一次不等式.
    根據(jù)根的判別式:,即可得到結(jié)論;
    利用分解因式法解一元二次方程,可得出、,根據(jù)方程有一根小于2,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.
     23.【答案】當(dāng)時,yx的增大而增大;當(dāng)時,yx的增大而減小  2 03 【解析】解:當(dāng)時,

    故答案為:
    根據(jù)列表,描點,畫圖像如下:

    觀察函數(shù)圖像,當(dāng)時,yx的增大而增大;
    當(dāng)時,yx的增大而減小,
    故答案為:當(dāng)時,yx的增大而增大;當(dāng)時,yx的增大而減小,
    因為
    所以,
    解得,
    故有2個不同的實數(shù)根,分別為03,
    故答案為:2;0
    求當(dāng)時的函數(shù)值即可;
    按照自變量從小到大的順序用平滑的曲線依次連接起來即可;
    結(jié)合函數(shù)的圖像,根據(jù)自變量的屬性,分段描述性質(zhì)即可;
    求得x軸的交點的橫坐標(biāo)即可.
    本題考查了函數(shù)值的計算,描點法畫函數(shù)圖像,圖像的性質(zhì),圖像與x軸的交點,熟練掌握所學(xué)相關(guān)知識是解題的關(guān)鍵.
     24.【答案】解:

    ;

    ,
    當(dāng)時,
    答:當(dāng)銷售單價定為每雙30元時,每天的利潤最大,最大利潤為200元. 【解析】本題考查的是二次函數(shù)的應(yīng)用,根據(jù)題意得到二次函數(shù).利用二次函數(shù)的性質(zhì)求出最大值.由二次函數(shù)的值求出x的值.
    用每雙手套的利潤乘以銷售量得到每天的利潤;
    得到的是一個二次函數(shù),利用二次函數(shù)的性質(zhì),可以求出最大利潤以及銷售單價.
     25.【答案】 【解析】解:D為原點,以DC所在直線為x軸,過點D作垂線為y軸,建立平面直角坐標(biāo)系,如下圖所示,


    故答案為:
    設(shè)拋物線解析式為,
    在拋物線上,
    ,
    解得,,
    ,
    代入,得,
    解得,舍去

    答:該同學(xué)把實心球扔出米.
    建立坐標(biāo)系,畫出函數(shù)圖象,由題意得出B的坐標(biāo);
    用待定系數(shù)法求出函數(shù)解析式,并令,解方程即可.
    本題考查了二次函數(shù)的應(yīng)用,熟練掌握用待定系數(shù)法求二次函數(shù)的解析式是解此題的關(guān)鍵.
     26.【答案】解:拋物線,
    對稱軸為
    拋物線是軸對稱圖形,
    AB關(guān)于軸對稱,


    拋物線,
    頂點
    直線ABy軸交點的縱坐標(biāo)為,

    頂點D到點C的距離大于2
    ,
     【解析】化成頂點式即可求得;
    根據(jù)軸對稱的特點求得即可;
    求得頂點坐標(biāo),根據(jù)題意求得C的坐標(biāo),分兩種情況表示出頂點D到點C的距離,列出不等式,解不等式即可求得.
    本題考查了二次函數(shù)的性質(zhì)以及二次函數(shù)圖象上點點坐標(biāo)特征,把解析式化成頂點式式解題的關(guān)鍵.
     27.【答案】 【解析】解:如圖,

    ,,

    ,
    ,
    ,

    ,

    故答案為:;
    如圖,


    ,
    ,
    是等邊三角形,
    ,
    ,
    E關(guān)于直線BF的對稱點為

    ,

    是等邊三角形,
    ,
    故答案為:10
    BD的數(shù)量關(guān)系是:,理由如下:
    設(shè),
    ;
    ,

    ,


    AE的中點N,連接BN

    ,
    ,
    直線BN是線段AE的垂直平分線,
    過點D,交BN于點M,
    ,
    是等腰直角三角形,
    ,,
    連接MA,ME
    ,
    ,

    ,
    同理可證,,
    ,
    ,

    ,

    四邊形FDME是平行四邊形,


    根據(jù)等腰三角形的兩個底角相等,結(jié)合,得到,根據(jù)三角形內(nèi)角和定理計算即可;
    根據(jù),得到,根據(jù),得到是等邊三角形,得到,根據(jù)對稱,得到得到,結(jié)合,得到是等邊三角形,從而得到;
    設(shè),,得證,取AE的中點E,連接BN,則BN滿足等腰三角形的三線合一性質(zhì),過點D,得證是等腰直角三角形,可證,得證,得證,從而證明,得到平行四邊形FDME,得證,根據(jù),代換得證.
    本題是幾何變換綜合題,考查了等腰直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),三角形全等的判定和性質(zhì),平行四邊形的判定和性質(zhì),勾股定理,等喲三角形的性質(zhì),熟練掌握上述各性質(zhì)是解題的關(guān)鍵.
     28.【答案】 【解析】解:,
    ,
    的“可控變點”坐標(biāo)為,
    故答案為:
    依題意,圖象上的點P的“可控變點”必在函數(shù)的圖象上.

    “可控變點”Q的縱坐標(biāo)7,
    當(dāng)時,解得;
    當(dāng),解得
    綜上所述“可控變點”Q的橫坐標(biāo)為3;
    依題意,圖象上的點P的“可控變點”必在函數(shù)的圖象上,

    ,

    ,
    當(dāng)時,,
    當(dāng)時,,
    的取值范圍是
    根據(jù)定義直接解答即可;
    根據(jù)定義,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案;
    根據(jù)定義,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.
    本題考查的是新定義題型,根據(jù)可控變點的定義,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.
     

    相關(guān)試卷

    2024~2025學(xué)年北京市西城區(qū)育才學(xué)校七年級(上)期中數(shù)學(xué)試卷(含答案):

    這是一份2024~2025學(xué)年北京市西城區(qū)育才學(xué)校七年級(上)期中數(shù)學(xué)試卷(含答案),共16頁。

    2022-2023學(xué)年北京市西城區(qū)育才學(xué)校七年級(上)期中數(shù)學(xué)試卷【含解析】:

    這是一份2022-2023學(xué)年北京市西城區(qū)育才學(xué)校七年級(上)期中數(shù)學(xué)試卷【含解析】,共21頁。試卷主要包含了選擇題,填空題,解答題,附加題一,附加題二等內(nèi)容,歡迎下載使用。

    2022-2023學(xué)年北京市西城區(qū)育才學(xué)校九年級(上)期中數(shù)學(xué)試卷【含解析】:

    這是一份2022-2023學(xué)年北京市西城區(qū)育才學(xué)校九年級(上)期中數(shù)學(xué)試卷【含解析】,共30頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

    英語朗讀寶
    資料下載及使用幫助
    版權(quán)申訴
    • 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯誤問題請聯(lián)系客服,如若屬實,我們會補償您的損失
    • 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時請及時更新
    • 3.資料下載成功后可在60天以內(nèi)免費重復(fù)下載
    版權(quán)申訴
    若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
    入駐教習(xí)網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
    版權(quán)申訴二維碼
    期中專區(qū)
    • 同課精品
    • 所屬專輯22份
    歡迎來到教習(xí)網(wǎng)
    • 900萬優(yōu)選資源,讓備課更輕松
    • 600萬優(yōu)選試題,支持自由組卷
    • 高質(zhì)量可編輯,日均更新2000+
    • 百萬教師選擇,專業(yè)更值得信賴
    微信掃碼注冊
    qrcode
    二維碼已過期
    刷新

    微信掃碼,快速注冊

    手機號注冊
    手機號碼

    手機號格式錯誤

    手機驗證碼 獲取驗證碼

    手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

    設(shè)置密碼

    6-20個字符,數(shù)字、字母或符號

    注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
    QQ注冊
    手機號注冊
    微信注冊

    注冊成功

    返回
    頂部
    添加客服微信 獲取1對1服務(wù)
    微信掃描添加客服